

SAFE AND CLEAN WATER

The City of West Jordan is dedicated to providing safe and dependable water to its residents. The city is pleased to present its 2023 Water Quality report which contains important information regarding the quality of your drinking water.

OUR WATER SOURCES

The City of West Jordan's water supply comes from two sources:
85% from the Jordan Valley Water Conservancy District (treate water sources include mountain reservoirs, springs, wells.)

15% from the city-owned groundwater wells. (Only used during summer months to help meet high water demand.)

ARE THERE CONTAMINANTS IN MY DRINKING WATER?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of contaminants. The presence of contaminants doesn't necessarily mean that water poses a health risk.

FLUORIDATION

In accordance with the Salt Lake Valley Health Department, the Jordan Valley Water Conservancy District has been adding fluoride to drinking water since October 1, 2003. Combined with the natural fluoride already present in the water, the amount added provides about 0.6 mg/L in your tap.

ARSENIC

While your drinking water meets EPA standards for arsenic, it still can contain low levels of arsenic. The EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The EPA continues to research the health effects of low levels of arsenic, which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

NITRATE

Nitrate in drinking water at levels above 10 parts per million (ppm) is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for medical advice from your healthcare provider regarding Nitrate in water.

LEAD

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of West Jordan is responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize your potential for lead exposure by flushing your tap for 30 seconds to two minutes before using water for drinking or cooking. If you're concerned about lead in your water, you may wish to have it water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize is exposure can be found online at epa.gov/safe-water/lead.

For more information about other contaminants and potential health effects, please call the Environmental Protection Agency's Safe Drinking Water Hotline: 1-800-426-4791 or visit online: epa.gov.

WATER TESTING

The Water Division takes more than 100 water samples each month to make sure the levels for chlorine and disinfectant biproducts are safe. They look for bacteria and viruses to monitor natural contaminants like lead and copper.

DRINKING WATER SOURCE PROTECTION

Pollution prevention is the most effective groundwater protection measure. Underground aquifers are often threatened by contamination from paint, used motor oil, gasoline, or lawn and garden chemicals that are not disposed of properly. Once the aquifer is polluted, it takes decades and millions of dollars to restore its pristine condition.

POTENTIAL CONTAMINANTS

Water quality can be affected by several natural elements as well as chemical elements introduced by humans. Contaminants resulting from unwise landscaping practices such as over apply or over watering might include dirt, leaves, grass clippings, fertilizers, herbicides, and pesticides.

AVOIDING WATER CONTAMINATION

- Never use the gutter or storm drain system for disposal of household hazardous waste. If you wouldn't drink it, don't dump it.
- Reduce vehicle emissions through regular maintenance and limiting usage.
- Clean spills with kitty litter or another absorbent material and let it dry.
- Follow manufacturers' directions and properly dispose of unused household chemicals like cleaners, herbicides, and pesticides.
- Store toxic products and chemicals indoors in a shed or storage cabinet.
- Use the least hazardous methods first to prevent and control pest or weed problems.
- Look for and consider using the least toxic cleaning products available.
- Take unwanted hazardous materials and containers to the household hazardous waste disposal facility at the Trans-Jordan Landfill.
- Do not wash tools and equipment in gutters, driveways, or drainage ways.
- ▶ Inspect and maintain vehicles to reduce fluid leakage.
- Vehicles should be washed at a commercial car wash. Vehicles can be washed on the lawn with biodegradable soap to reduce wash water flowing to the storm drain system.
- Recycle oil. Pour used oil into an unbreakable container like a plastic milk jug, seal, and label. Recycling oil could reduce national petroleum imports by 25.5 million barrels a year.
- Do not mix other materials with oil.

STORMWATER POLLUTION

Stormwater is NOT TREATED and can affect overall water quality. Stormwater flows through storm drains to local creeks, canals, and rivers which can then move to groundwater.

We all live downstream. Everything that is dropped, sprayed, or poured on the ground could up in stormwater. Avoid placing waste products or chemicals near or in storm drains. Protection of stormwater is key to protecting our drinking water supply.

WHAT YOU CAN DO TO PROTECT OUR WATER SUPPLY

Look through your home, garage, or shed for the usual assortment of cans, bottles, and boxes of leftover household cleaners, oil-based paints, stain removal products, and automotive fluids. If these products are used in any way other than what they were intended, they are considered hazardous materials and could harm our storm water and water supply.

The Trans-Jordan Landfill accepts residential hazardous household waste for no charge Monday-Saturday from 8 AM to 5 PM at 10873 S. Bacchus Hwy., South Jordan. You can report illegal dumping of oil, fuel, pant, and other hazardous materials into the storm system to West Jordan Public Works: 801-569-5700.

CROSS CONNECTION CONTROL AND BACKFLOW PREVENTION

A cross connection is an actual or physical connection to the drinking water system through piping that has the possibility of allowing pollutants or contaminants to backflow into the public drinking water system.

Backflow is the reverse flow of non-potable water or other substances back into the drinking water system. A backflow incident could carry pollutants or contaminants into the drinking water system making it unsafe.

Protect your drinking water by installing an inexpensive Hose Bib Vacuum Breaker on each threaded hose bib around your home. These are needed when a hose bib doesn't come with an anti-siphon feature from the factory and can be found at a home improvement store. Remove hose bib vacuum breakers during freezing temperatures to prevent water pipe breaks.

City code requires all landscape sprinkling systems connected to the public drinking water system be equipped with an approved backflow prevention assembly. These need to be tested annually to comply with state laws.

INDOOR AND OUTDOOR WATER USE

About 66% of West Jordan residents' culinary water is used for landscape irrigation. Most of us give our lawn twice as much water it really needs. The easiest way to achieve the most water savings is to water deeply, but as infrequently as possible, depending on the weather. Try applying $\frac{1}{2}$ " of water at a time, and irrigate once a week in the spring, increasing gradually to once every three days in the summer, and then gradually back to once a week in the fall.

'SLOW THE FLOW'

Utah is a desert state, and even if we never have another drought, the Utah Division of Water Resources says water conservation is critical because of population growth. The city's water supplier is also required by federal contracts to reduce per capita water consumption.

The goal is to reduce per capita consumption by 25% between the years 2000 and 2025. The city has reduced per capita consumption since the year 2000, and we fully expect to reach the 25 percent goal by 2025. West Jordan is on the right track. With your help, we will reach out long-term goals.

Visit conservewater.utah.gov for real-time watering recommendations.

QUESTIONS OR INPUT

Public comment can be shared during City Council meetings. The Council meets the 2nd and 4th Wednesday each month. Find more information on our website: westjordan.utah.gov.

UNUSUAL TASTE, ODOR, OR COLOR?

Promptly contact the Water Division if your water is ever discolored or you notice any changes in the taste or odor of your water. 801-569-5700 or 801-330-4528 for after-hour emergencies.

REQUESTS OR QUESTIONS?

Water Operations: 801-569-5700 After-hour Emergencies: 801-330-4528 publicworks@westjordan.utah.gov Utility Billing: 801-569-5020 The table below lists all of the parameters in the drinking water detected by Jordan Valley Water Conservancy District or its suppliers in the drinking water during the calendar year of this report. The presence of these parameters in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of this report. For certain parameters, EPA and/or the State requires monitoring at a frequency less than once per year because the concentrations do not change frequently.

Parameter	Units	Overall Average	Overall Max Data	Overall Min Data		Monitoring Cri	teria	Last	
		Data			MCL	MCLG	Violation	Sampled	
PRIMARY INORGANICS									
Antimony	ug/L	ND	0	ND	6.00	6.00	No	2022	Discharge from petroleum refineri
Arsenic	ug/L	1.6	7.3	ND	10	0	No	2022	Erosion of naturally occurring dep
Asbestos	MFL				7	7	No	2021	
Barium	ug/L	51.5	221.0	ND	2000	2000	No	2022	Erosion of naturally occurring dep
Beryllium	ug/L				4	4	No	2022	Discharge from metal refineriesan
Cadmium	ug/L				5	5	No	2022	Corosion of galvanized pipes, erosi
Copper	ug/L	5.5	125.0	ND	NE	NE	No	2022	Erosion of naturally occurring dep
Chromium	ug/L	0.0	5.0	ND	100	100	No	2022	Discharge from steel and pulp mills
Cyanide, Free	ug/L	<0.002	3.000	ND	200	200	No	2022	Discharge from steel/metal factori
Fluoride	mg/L	0.63	0.80	0.10	4	4	No	2022	Erosion of naturally occurring dep
Lead	ug/L	0.0	1.0	ND	NE	NE	No	2022	Erosion of naturally occurring dep
Mercury	ug/L				2	2	No	2022	Erosion of naturally occurring dep
Nickel	ug/L	0.33	3.69	ND	NE	NE	No	2022	Erosion of naturally occurring dep
Nitrate	mg/L	1.36	4.00	ND	10	10	No	2022	Runoff from fertilizer, leaching from
Nitrite	mg/L				1	1	No	2022	Runoff from fertilizer, leaching from
Selenium	ug/L	0.7	8.1	ND	50	50	No	2022	Erosion of naturally occurring dep
Sodium	mg/L	23.5	74.2	8.0	NE	NE	No	2022	Erosion of naturally occurring dep
Sulfate	mg/L	52.4	239.0	5.4	1000	NE	No	2022	Erosion of naturally occurring dep
Thallium	ug/L							2022	Erosion of naturally occurring dep
TDS	mg/L	248.8	1150.0	88	2000	NE	No	2022	
Turbidity (groundwater sources)	NTU	0.2	3.6	0.01	5	NE	No	2022	MCL is 5.0 for groundwater. Suspe
Turbidity (surface water sources)	NTU	0.03	0.15	0.01	0.3	TT	No	2022	MCL is 0.3 NTU 95% of the time fo
SECONDARY INORGANICS - Aest	hetic Standard	ls							
Aluminum	ug/L	0.0	0.0	0.0	SS = 50-200) NE	No	2022	Erosion of naturally occurring dep
Chloride	mg/L	39.1	161.0	10.00	SS = 250	NE	No	2021	Erosion of naturally occurring dep
Color	CU	3.56	10.00	0.12	SS = 15	NE	No	2021	Decaying naturally occurring organ
Iron	ug/L	22.3	313	ND	SS = 300	NE	No	2021	Erosion of naturally occurring dep
Manganese	ug/L	1.3	34.00	ND	SS = 50	NE	No	2021	Erosion of naturally occurring dep
Odor	TON				SS=3	NE	No	2021	Various Sources.

Comments/Likely Source

ries; fire retardants; ceramics; electronics; solder. posits and runoff from orchards.

posits.

and coal burning factories.

osion of natural deposits

posits.

ills; Erosion of natural deposits.

ries; discharge from plastic and fertilizer factories.

posits and discharges from fertilizers. Fluoride added at source.

posits.

posits.

posits.

om septic tanks, and naturally occurring organic material.

om septic tanks, and naturally occurring organic material.

posits.

posits and runoff from road deicing.

posits.

posits.

pended material from soil runoff.

for surface water. Suspended material from soil runoff.

posits and treatment residuals.

posits.

anic material and suspended particles.

posits.

posits.

The table below lists all of the parameters in the drinking water detected by Jordan Valley Water Conservancy District or its suppliers in the drinking water during the calendar year of this report. The presence of these parameters in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of this report. For certain parameters, EPA and/or the State requires monitoring at a frequency less than once per year because the concentrations do not change frequently.

Parameter	Units	Overall Average	Overall Max	Overall Min	Мс	onitoring Cri	teria	Last	
		Data	Data	Data	MCL	MCLG	Violation	Sampled	
SECONDARY INORGANICS - Aesthetic Standards (Continued)									
рН		6.9	8.7	0.0	SS = 6.5-8.5	NE	No	2021	Naturally occurring and affected b
Silver	ug/L				SS=100	NE	No	2021	Erosion of naturally occurring depo
Zinc	ug/L	0.0	1.0	ND	SS = 5000	NE	No	2021	Erosion of naturally occurring depo
UNREGULATED PARAMETERS	- monitoring not r	equired							
Alkalinity, Bicarbonate	mg/L	126	225	0	UR	NE	No	2022	Naturally occurring.
Alkalinity, Carbonate	mg/L	0.3	4.0	ND	UR	NE	No	2022	Naturally occurring.
Alkalinity, Hydroxide	mg/L	ND	0.0	ND	UR	NE	No	2022	Naturally occurring.
Alkalinity, Total (CaCo3)	mg/L	102.3	225	0.0	UR	NE	No	2022	Naturally occurring.
Ammonia	mg/L		0.3		UR	NE	No	2021	Runoff from fertilizer and naturally
Bromide	ug/L	9.9	14.3	0.0	UR	NE	No	2021	Naturally occurring.
Boron	ug/L				UR	NE	No	2021	Erosion of naturally occurring depo
Calcium	mg/L	42.1	87	22.70	UR	NE	No	2022	Erosion of naturally occurring depo
Chemical Oxygen Demand	mg/L	ND	ND	ND	UR	NE	No	2014	Measures amount of organic comp
Chloropicrin	ug/L				UR	NE	No	2014	Antimicrobial, fungicide chemical o
Cobalt	mg/L				UR	NE	No	2022	Erosion of naturally occurring depo
Conductance	umhos/cm	419.4	1100	12.60	UR	NE	No	2022	Naturally occurring.
Cyanide, Total	ug/L				UR	NE	No	2022	Discharge from steel/metal factori
Dioxin	pg/L				UR	NE	No	2009	Industrial discharge from factories
Geosmin	ng/L	3.5	12.3	ND	UR	NE	No	2022	Naturally occurring organic compo
Hardness, Calcium	mg/L	113.0	210.0	18.0	UR	NE	No	2022	Erosion of naturally occurring depo
Hardness, Total	mg/L	173.2	381	75.60	UR	NE	No	2022	Erosion of naturally occurring depo
Chromium VI	mg/L				UR	NE	No	2011	Industrial runoff and naturally ocu
Magnesium	mg/L	15.1	41.3	ND	UR	NE	No	2022	Erosion of naturally occurring depo
Molybdenum	ug/L	0.87	0.00	ND	UR	NE	No	2022	By-product of copper and tungster
Oil & Grease	mg/L	ND	ND	ND	UR	NE	No	2016	Petroleum hydrocarbans can either occ
Orthophosphates	ug/L	2.1	20.0	ND	UR	NE	No	2022	Erosion of naturally occurring depo
Potassium	mg/L	2.2	10.9	ND	UR	NE	No	2022	Erosion of naturally occurring depo
Silica (Silicon Dioxide)	mg/L				UR	NE	No	2020	Erosion of naturally occurring depo
TSS (Total Suspended Solids)	mg/L	0.2	4.0	ND	UR	NE	No	2022	Erosion of naturally occurring depo

Comments/Likely Source
by chemical treatment.
posits.
posits.
ly occuring.
posits.
posits.
pounds in water. Naturally occurring.
compound
posits.
ies; discharge fromplastic and fertilizers
S
ound associated with musty odor.
posits.
posits.
urring
posits.
n mining.
cur from natural underground deposits or from man made lubricants.
posits.
posits.
posits.
posits.

The table below lists all of the parameters in the drinking water detected by Jordan Valley Water Conservancy District or its suppliers in the drinking water during the calendar year of this report. The presence of these parameters in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of this report. For certain parameters, EPA and/or the State requires monitoring at a frequency less than once per year because the concentrations do not change frequently.

Parameter	Units	Overall Average	Overall Max	Overall Min Data	Monitoring Criteria			Last		
	Onits	Data	Data		MCL	MCLG	Violation	Sampled		
UNREGULATED PARAMETERS - monitoring not required (Continued)										
Turbidity (distribution system)	NTU	0.5	1.8	0.1	UR	NE	No	2022	Suspended material from soil runoff.	
Vanadium	ug/L	0.854	0.00	ND	UR	NE	No	2021	Naturally occurring.	
VOCs										
Chloroform	ug/L				UR	NE	No	2022	By-product of drinking water disinfection.	
Dibromochloromethane	ug/L				UR	NE	No	2022	By-product of drinking water disinfection.	
Bromodichloromethane	ug/L				UR	NE	No	2022	By-product of drinking water disinfection.	
Bromoform	ug/L				UR	NE	No	2022	By-product of drinking water disinfection.	
All Other Parameters	ug/L	ND	ND	ND	UR	NE	No	2022	Various sources.	
PESTICIDES/PCBs/SOCs										
Bis (2ethylhexyl) phthalate	ug/L	ND	0.06	0.81	ND	6.0	No	2022	Discharge from rubber and chemical factories.	
All Other Parameters	ug/L	None Detected						2022		
RADIOLOGICAL										
Radium 226	pCi/L	0.23	1.30	-0.54	NE	NE	No	2022	Decay of natural and man-made deposits.	
Radium 228	pCi/L	0.45	1.60	-0.30	NE	NE	No	2022	Decay of natural and man-made deposits.	
Gross-Alpha	pCi/L	0.7	2.8	7.2	-1.3	15	No	2022	Decay of natural and man-made deposits.	
Gross-Beta	pCi/L	3.9	11	0.9	50	NE	No	2022	Decay of natural and man-made deposits.	
Uranium	ug/L	4	10	0	30	NE	No	2022	Decay of natural and man-made deposits.	
Radon	pCi/L	ND	0	ND	NE	NE	No	2020	Naturally occurring in soil.	
DISINFECTANTS / DISINFECTION	BY-PRODU	стѕ								
Chlorine	mg/L	0.54	0.84	0.18	4	NE	No	2022	Drinking water disinfectant.	
TTHMs	ug/L	32.46	44.20	16.50	80	NE	No	2022	High result is not a violation, violation is determined o	
HAA5s	ug/L	15.99	24.20	8.98	60	NE	No	2022	High result is not a violation, violation is determined o	
НААб	ug/L	0.00	54.40	ND	UR	NE	No	2022	By-product of drinking water disinfection.	
Highest Annual Location Wide Avg.	ug/L	TTHM = 40.0 ug/L	· r				No	2022		
		HAA5s = 22.8 ug/l	-							
Bromate	ug/L	ND	ND	ND	10	0	No	2022	By-product of drinking water disinfection.	
Chlorine Dioxide	ug/L	0.04	0.44	ND	800	NE	No	2022	Drinking water disinfectant.	
Chlorite	mg/L	0.46	0.99	ND	1	0.8	No	2022	By-product of drinking water disinfection.	

Comments/Likely Source

d on annual location average. By-product of drinking water disinfection. d on annual location average. By-product of drinking water disinfection.

The table below lists all of the parameters in the drinking water detected by Jordan Valley Water Conservancy District or its suppliers in the drinking water during the calendar year of this report. The presence of these parameters in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of this report. For certain parameters, EPA and/or the State requires monitoring at a frequency less than once per year because the concentrations do not change frequently.

Parameter	Units	Overall Average	Overall Max Data	Overall Min Data	Mo	nitoring Crit	eria	Last			
		Data			MCL	MCLG	Violation	Sampled			
ORGANIC MATERIAL											
Total Organic Carbon	mg/L	1.76	2.96	ND	ТТ	NE	No	2022	Naturally occurring.		
Dissolved Organic Carbon	mg/L	1.91	2.27	1.60	TT	NE	No	2022	Naturally occurring.		
UV-254	1/cm	0.02	0.04	0.01	UR	NE	No	2022	This is a measure of the concentrat		
PROTOZOA (sampled at sou	ırce water)										
Cryptosporidium	Oocysts/1L	ND	ND	ND	TT	0	No	2017	Parasite that enters lakes and river		
Giardia	Cysts/1L	1.5	7	ND	ТТ	0	No	2017	Parasite that enters lakes and river		
MICROBIOLOGICAL											
Total Coliform	% Positive per Month	0%	0%	0%	Not >5%	0	No	2022	MCL is for monthly compliance. Al		
									Human and animal fecal waste, nat		
HPC	MPN/mL	14.8	68	0.2	500	0	No	2022	Used to measure the overall bacter		
LEAD and COPPER (tested	at the consumer's tap) - m	nonitoring req	uired every	3 years.							
Lead	ug/L	1	7	0.00	AL = 15	NE	No	2020	Lead violation is determined by the		
									systems, erosion of naturally occur		
Copper	ug/L	164	693	43	AL = 1300	NE	No	2020	Copper violation is determined by t		
									systems, erosion of naturally occur		
90th Percentile		Lead =2	.23 ppb, Co	pper = 252 p	opb						
# of sites above Action Level		Lead = (D, Copper =	0							
ng/L: nanograms per liter		HAA5s:	Five Haloace	etic Acids			UR: Unr	egulated			
NTU: Nephelometric Turbidity	Unit	HPC: He	terotrophic	Plate Count			TT: Trea	TT: Treatment Technique			
CU: Color Unit		VOCs: V	olatile Orgar	nic Compour	nds		AL: Act	AL: Action Level			
TON: Threshold Odor Unit			olychlorinate	ed Biphenyls		SS: Sec	SS: Secondary Standard				
umhos/cm: micro ohms per centimeter			ynthetic Org	anic Chemic	als						
1/cm: One / centimeter											
pCi/L: picocuries per liter											
MFL: Millions of Fibers per Lite	er										
MPN/mL: most probable num	ber per milileter										
Oocysts/1L: Oocysts per 1 liter											
Cysts/1L: Cysts per 1 liter											

Comments/Likely Source

ation of UV-absorbing organic compounds. Naturally occurring.

vers through sewage and animal waste.

vers through sewage and animal waste.

All repeat samples were negative; no violations were issued. aturally occurring in the environment.

eriological quality of drinking water

he 90th percentile result. Corrosion of household plumbing urring deposits.

y the 90th percentile result. Corrosion of household plumbing urring deposits.